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Using the theory of generalized functions, the method of boundary integral equations is developed to solve four non-stationary 
boundary-value problems of coupled thermoelastodynamics for media with anisotropy of the elastic properties and thermal 
isotropy. Regular integral representations of solutions in Laplace transform space with respect to time and singular boundary 
integral equations are constructed. The uniqueness of the solution of the boundary-value problems, including those in the shock- 
wave class, is proved. © 2001 Elsevier Science Ltd. All rights reserved. 

Solutions of boundary-value problems of thermoelasticity in regions of classical forms, obtained by the 
method of complete and incomplete separation of variables, have been investigated most thoroughly, 
whereas the dynamics of thermoelastic bodies and media with a complex geometry of boundaries have 
been much less investigated. To solve problems concerning the stress concentration in a homogeneous 
and piecewise-homogeneous linear medium with stress concentrators of different forms, the boundary 
integral equation (BIE) method is effective. It was developed by a number of researchers to solve static 
and quasi-static problems of thermoelasticity in regions with complex geometry, and has also been used 
to solve boundary-value problems of uncoupled thermoelastodynamics with specified unsteady heat fluxes 
on the boundary [1, 2]. Unlike these studies, in the present paper a BIE method is developed for solving 
non-stationary boundary-value problems for a model of a coupled thermoelastic medium. The use of 
such a model, in which the temperature gradient influences the deformation of the medium while the 
rate of volume deformation affects the change in temperature, is necessary to calculate the influence 
of dynamic loads on the thermal stressed state. 

A BIE method for solving boundary-value problems of coupled thermoelastodynamics was considered 
earlier in [3-5]. In this case, the traditional approach was used to construct the governing relations for 
the displacements and temperature and the BIEs, which is based on the identities of Betti reciprocity 
and their analogues for a thermoelastic medium. In the present paper, a new approach is proposed in 
developing the BIE method, based on the use of the theory of generalized functions, following a 
procedure proposed earlier [6]. It enables one, comparatively simply, to introduce into consideration 
classes of derivative-discontinuous solutions (shock waves), to derive the conditions at the wave fronts 
and to construct dynamic analogues of the Somigliana and Gauss formulae for a thermoelastic medium 
in generalized function space. 

1. T H E  G O V E R N I N G  R E L A T I O N S  S H O C K  W A V E S  

A linear isotropic thermoelastic medium is characterized by a finite number of thermodynamic 
parameters: the mass density p, the Lam6 constants of elasticity, k and Ix and the thermoelastic constants 
~', 11 and ×. In a Cartesian system of coordinates, such a medium is described by the following system 
of equations [7] 

~ij. j - Pi~i + F,. = 0 

O,jj - × - I 0  - rl,ij, j + FN+ I = 0, j = 1 . . . . .  N (1.1) 
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where Ul are the components of the displacement vector u(x ,  t), ui, j = Oui/Oxj = O ju i ,  0 - UN+ 1 is the 
relative temperature (0 = T(x,  t) - T (x ,  0 ) ) ,  T is the absolute temperature, F i are the components of  
the mass force, FN+I = (~0~:) -1W, Wis the amount of heat released per unit volume in unit time, )~0 is 
the thermal conductivity and ~ij are the components of the stress tensor related to the displacements 
by the Duhamel-Neyman laws 

(Y ij = ~i)~)klUtc,t + t't(Ui.j + Uj, i ) -- "~l~ij 0 (1.2) 

When N = 2 the case of plane deformation is considered, and when N = 3 the case of spatial 
deformation. Everywhere, summation is carried out over repeated subscripts within their given range 
of variation. 

Substituting expression (1.2) into system (1.1), we obtain a complete system of equations in u 

L o (Ox, O,)uj  + F~ = 0 

L O. = (~.-Fl.t)biO j + ( t x A -  p~) ,0 , )8i)  --~t~j(N+l)~i, i = 1, 2 . . . . .  N (1.3) 

L(N+I)j = (A - ~-Ib t)Sj(u+l) -- rio - 5j(N+l))~tbj,  j = 1, 2 . . . . .  N + 1 

This is a system of the mixed hyperbolic-parabolic type. Waves propagating in the thermoelastic medium 
may be shock waves. The equation of the wave front F has the form 

det{L,~(v, v,)}=det{L,~Cv, v,)} IlvU z, Ilvl12 = (1.4) 
i=1 

where L 2 is the principal part of the operator Liy (Ox, Ot), which contains only the higher second-order 
derivatives, and L~ is the differential operator of the equations of motion of the elastic solid with the 
parameters )~, bt and p; (v, vt) and (Vl, . . . ,  VN, Vt) is the vector of the normal to F in R N+I. 

From (1.4) it follows that 

either llvll= 0, or det{L,~(v, v t )}=0  

The first equation describes the characteristic surface of the classic parabolic equation, which has the 
form t = const and does not determine the wave front in R N. The second equation describes the wave 
fronts Ft moving in R N with velocity 

c=lv, I/M, ¢ = c j ,  j = l ,  2 (1.5) 

where cl = ~/(k + 2~t)/p is the velocity of the elastic body waves and c2 = ~ ' ~  is the velocity of the 
shear waves. Thus, wave fronts (shock waves) in the thermoelastic medium travel at the velocity of elastic 
waves. To derive the conditions at the wave fronts, it is convenient to use the theory of generalized 
functions. 

We introduce a space of finite infinitely differentiable vector functions 

(p(x, t )={(pl (x ,  t) . . . . .  ( p u + l ( x ,  t ) }~Div+l (R  N+l) 

The conjugate space D~+I(R u+l) - the space of gen.eralized vector functions f(x, t) = {)~(x, t), 
i = 1, 2, . . . ,  N + 1} - of linear functionals on DN+I(R N+l) corresponds to this. Taking the rules for 
the differentiation of generalized functions into account, we obtain the equations of motion of 
Dk+I(R N+') 

~ij, j - Pui,. + PGi = LGi) v)  - Pui, tv, JFSF(  x, t) + 

"1- ~ j(L ( ~.UkVk - "~O)~ij "l" ~(UiV j + UjVi ) JFSF (x, t ) ) - pO, ([Ui ]vv,Sr(x,  t ) ) 

(),jj - ×-l(),t - "qfij,jt + ×-I1} = L ( 0  ) _ r l f i j ) v )  - × - 1 0 v ,  JF~)F(X, t) + 

+0,([%-nu,v,JS,(x, ,>) 
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The square brackets denote a sudden change in the function on the characteristic surface F in R u+l 
corresponding to the wave front Ft in R or. For the conditions of continuity of the medium to be conserved, 
and for the vector function u to be the solution of system (1.1) in Dk+a(R a:+ 1), the sudden changes must 
satisfy the following conditions 

L.,L_-o, to¿ =0 

Loov,-pv,.;L:o, , ,  . . . . .  ( 1 . 6 )  

Taking Eqs (1.3) and the equality nj = vdll v II into account, we derive from them the laws of conservation 
on the moving wave fronts Ft in R ~" 

[u]~, = 0, [01r, = 0 (1.7) 

k(Yijnj + pcui JF~ = 0 (1.8) 

LO.jn4JF, = nLt~jnjJF, (1.9) 

where n i are the components of the wave vector, i.e. the unit vector perpendicular to FI and in the direction 
of propagation of the wave. The first equality of (1.7) is the condition of conservation of continuity of 
the medium, and (1.8) is identical with the well-known law of conservation of momentum on the wave 
fronts of shock waves in elastic media. It follows from the second relation of (1.7) and (1.9) that, on the 
wave fronts, the temperature is continuous, but its gradient undergoes a sudden change proportional to 
the sudden change in the normal component to the displacement velocity front of the medium. 

By virtue of the continuity of u, the first equality of (1.7) implies the condition that the tangential 
derivatives to the front are equal, which has the form 

kvjtJi-v,ui, jJ=O, i=I ,  2 . . . . .  N+I,  j = l ,  2 . . . . .  N (1.10) 

since the vectors ~ = (8~vt . . . . .  8~vvt, - vi) lie in the tangential plane to F: 

N+I N 
Z i 8~v,vj  = v;v, - viv, = 0 XjVj = ~ --ViV I )=l )=l 

We will call the solution of Eqs (1.1) that satisfies conditions (1.7)-(1.9) the classical solution. 

2. G R E E N ' S  TENSOR AND ITS P R O P E R T I E S  

We will consider the fundamental solutions of Eqs (1.1). Among them,Green's tensor, corresponding 
t o  F i = ~(x, t)8i0. ] (8(x,  t )  - 8 (x )~( t ) ,  ~)ij is the Kronecker delta) occupies a special place and satisfies the 
initial conditions 

U/(x, 0)=0,  i, j = l ,  2 . . . . .  N+I;  l)./(x, 0)=0, j = l ,  2 . . . . .  N, x # 0  (2.1) 

If the mass forces and heat sources are known, then, for an unbounded medium, the solution has the 
form of the convolution 

ui(x, t)=U/(x, t)*Fj(x, t )=~  (Ix I U/ (x -y ,  t-x)Fj(y, z)dV(y) (2.2) 
o R~¢ 

i ,j= l,2 ..... N + I  

The Laplace transform with respect to time was constructed [8] for this tensor U](x,p) (p is the Laplace 
transformation parameter) for N = 2, 3. Construction of the analytical formula for the original is 
impossible, and therefore the BIEs for solving the boundary-value problems are constructed for the 
displacement transform. 
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m .  

Consider the properties of U](x, p). 

Properties of symmetry 

U/(x, p)=~j(x, p), ~/(-x, p)=~qx, p) 

u/S(x, p ) =  m(;Z+2P')'O'~(x, p), U/C+l(-x, p)=--u/N÷I(X, p) (2.3) 
rlpx 

i X 7 " 7 N + 1 .  7"7 N + I .  U--~+t(-x, p)=--U"'N+l( , p), ON+ jr-x, p)=UN+ItX, P); i, j = l ,  2 . . . . .  N 

Unlike an elastic medium, here Green's tensor, generally speaking, is asymmetrical both with respect 
to the indices and the argument. 

The asymptotic form at infinity. For N = 2 [8] 

lira U/k(r, p ) = 0  (2.4) |xn--,~ 

since u/k(r, p)  is expressed in terms of the MacDonald function K~(z), while K~(z) ~ 0 when 
z--~ ~ ,  R e z  > 0. 

For N = 3, the damping is exponential since exp(-~-r), Re~j > 0 occurs in the dynamic functions. 
To construct the asymptotic form of uki(r,p) for large t, since 

lira UJ(x, t )= lira pUiJ(x, p) 
t-.--~ ~ p - - - ) + 0  

we consider the properties of the quantity pU/(x, p). When p --~ +0 ( I m p  = 0), we have ~2 ___) 0, 
p lnp- - )  0. 

Then, for N = 2 

p lnp[8 ,  l + e  c2(2+e)-2c~(l+~.)rir,]__> 0 
pU'i'(x' P) 21tl't L ' +--2-- c21(l+l~)a-pk 

pU~(x, p) rlp2r P(p)r k --)0, pUi3(x, p) - - mpr p(p)ri -->0 
8n(L + 21a) 8rt× 

pU'a3(x, p ) - -  P P(p)--~O, P ( p ) =  Cl2(l+l~)21np 
41tx c?( l  + E) 2 - p x  

i.e. a disturbance at any point of the medium attenuates with time. 
Asymptotic representations of U~(r, p) when x ---) 0. Using asymptotic representations for special 

functions, the asymptotic forms of 0~, presented in Table 1, were plotted. From formula (2.2), the thermal 
stressed state of the medium when acted on by a pulsed concentrated and time-distributed force and 
heat sources for rock was calculated.? 

Table 1 

/N+I  

U'~+i 

N=2(i,k= 1,2) N= 3(i,k= 1,2,3) 

(4g11) -I { (1 -- C 2)r ir  k - In r~5~ (I + c 2 ) } 

- (4  XX) -1 mrirln r 

- (4~(~. + 21a)) -I qprkr In r 

- (2nx)  -I In r 

(8x la r ) - l{ ( l - c  2) rir.k +6~(1+c2)} 

(8~x) -j ml:i 

(8~(k + 21a)) -I qpr, 

(4/t×r) -I 

tKUPESIVA, B.N., Fundamental solutions and boundary integral equations of problems of coupled thermoelastodynamics. 
Candidate dissertation 01.02.04, almaty, 1998. 
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3. FORMULATION OF THE BOUNDARY-VALUE PROBLEMS AND THE 
U N I Q U E N E S S  OF THE SOLUTIONS 

Suppose the medium occupies a region S- bounded by a closed Lyapunov surface S with an outward 
normal n. The initial and boundary conditions are known, namely, 

ui(x, O) = uO(x), 0(x, 0) = 0°(x), x ~ (S- + S); adx, O) = u°(x), x ~ S- 

u ° ~C(S+S- ) ,  uO ~ C ( S + S - )  (3.1) 

Problem 1. On the boundary (x ~ S), the load and heat flux are specified: 

(~ij(X, t)nj(x)= qS(x, t), qS ~ C'(Sx[0, .o)) (3.2) 

00(x, O/On=qS(x,  t), qS E C(Sx[0, **)) (3.3) 

Problem 2. On the boundary (x ~ S), the displacements and temperature are specified: 

u,(x, t)=uS(x,  t), uS(x, 0)=u°(x); u s eC(Sx[0 ,  .o)) (3.4) 

O(x, t)=OS(x, t), OS(x, 0)=0°(x):  oS ~C(Sx[O, **)] (3.5) 

Problem 3. On the boundary (x ~ S), the displacements (conditions (3.4)) and heat flux (conditions 
(3.3)) are specified. 

Problem 4. On the boundary (x ~ S), the load (conditions (3.2)) and temperature (conditions (3.5)) 
are specified. 

Here, C(...) is a class of continuous functions on the given set, and C'(.. .)  is a class of piecewise- 
continuous bounded functions. On the fronts of the solutions, the conditions of continuity (1.7)-(1.9) 
are satisfied. 

It is required to construct the governing relations and BIEs for these problems. 
Further, to simplify the calculations, it is convenient to represent o/i in the form 

%j = Ci~t u,.t - "tSijO (3.6) 

where C klare the tensor components of the constants of elasticity, generally speaking, of an anisotropic 
thermoelastic medium, satisfying the symmetry conditions 

C~t = C;kt _ tk " - C~ = C~ (3.7) 

In the isotropic case it has the form 

Ci~ t = 2vSqSkt + ~t(SikSjt + 8,.t8i, ) 

Theorem 3.1. If a solution of the boundary-value problem exists, it is unique. 

Proof. We put 

2W(u, O, t)= Gijui, j +l~]til] 2 + ~lOuj,: +y01×)-I02 = 

= c,J% j,,,., +  ],ill + r(,1,,)- '  o i ,  j = 1, 2 . . . . .  N 

We multiply the first equation of system (1.3) scalarly by tii, and the second by yq-10, and add. Grouping 
terms and using the equality 

we obtain 

a~.jo~i = l (c~tui,ju,.i)., - ~ai.j 

+ vn-'o% ),j - w,, - Vn-'llgrad Of: + + V,,n-'OFN+, = 0 
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We integrate with respect to S- x (0, t) using Gauss' theorem. We have 

i dtJ ([ti.joi)+Trl-~OO,j)njdS(y) - ~ (W(u, O, t ) - W ( u ,  O0))dV(x)-  
0 S S -  

-Yq - ' i  dt [. llgradellzdV(x)+ Z J L(~,~,j +~-~o%)vj-w(., o, t)v, JJF(x)+ 
0 S -  F F 

t 
+[ dt I (ujFj + ~rl-~OFN÷~)dV(x)=O 

0 s -  

where dF is the differential of the area of the characteristic surface F in R N x t, which corresponds to 
the wave front Ft in R N. We integrate over the surfaces of all the wave fronts entering the region of inte- 
gration. We evaluate the integral obtained. Using the conditions on the fronts (1.7)-(1.10), we transform 

(d~c~q ,ffl-~00.j)vj- W(u,O,t)~, /[ti;(er;jvj 
I 

+ -~ --  puiV," )]  - -  "-2[(Yij ( V t U i . j  -- [ i iV j  )] + 

+'ffl-'[OO.jv j - l v t (  rlOuj.j + ×-'O2 )] = 2[t[[cYij v j - P[tivt lti[ + lo~j  v j[[~i ] - 

! - it I _ ] _ !  OVt[Uj.j] -.~ v,u~.jc~ [uk.t] +-~ v,u~. j r [0]80  + ~ - ~ 0 [ 0  i v j  

= , / q - ;0 [ (0  4 - q t i j  ) v j  + ~ ( t i j v j  - v tu j .  j )] = 0 

Finally, we obtain 

I t 

dt~ (ui4Oij + ffl-'OO,j)njdS(y)+ ~ at J (Fjuj + yrl-;×OFN+;)dV(x): 
0 S 0 S -  

t 
= [ (W(u,O,t ) -  W(u,O,O))dV(x)+ ~ dt ~ II grad0 II z dV(x) 

S -  0 S -  

This equality expresses the law of conservation of energy. The uniqueness of the solution of the boundary- 
value problem follows from this. 

In fact, we will assume that two solutions ug(x, t) (k = 1, 2) exist. Then the difference u = u I - / / 2  satisfies the 

zero boundary and initial conditions and the corresponding functions F i = 0 and Q = 0. For u we have ~ W(u, O, 
S- t 

t)dV(x) +~ dt [ II grad0 II 2 dV(x) = 0. Since the integrand is positive, it follows that u -- 0, i.e. u 1 = u 2. 
0 s -  

We will now formulate the problems in Laplace transform space with respect to time, since the kernels 
of the BIEs can be constructed only in this space. The equation of motion (1.1) in this space, taking 
into account the conditions on the fronts, take the form 

"O i j , j  - pp2"ffi + Pffii + Gi  = 0 

"O, j j  - P × - I ' o - r l p u j . j  + ffN+l + G-N+I = 0  ( 3 . 8 )  

G/= (pt~ 0 (x) + ppuO(x))H~ (x) 

In Laplace transform space the initial conditions are transformed into asymptotic conditions 

lim p'ff(x,p)=u°(x), lim p'O(x,p)---~O°(x), xE(S-+S)  
p --., +o. p --. +** 

lim p2-ff(x,p)=u°(x), xES-  (3.9) 
p---~ 4-~ 
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The boundary conditions have a form similar to (3.2)-(3.5), but only for the Laplace tranform. 
We then construct the governing relations and boundary integral equations using the theory of 

generalized functions, following the procedure described in [6]. 

4. THE A N A L O G U E  OF THE S O M I G L I A N A  F O R M U L A  IN 
G E N E R A L I Z E D  F U N C T I O N  SPACE 

We will use Hjl(x)  to denote the characteristic function of the set S-, which for a smooth surface S has 
the form 

I I, x~S-  
Hi(x)= ~ ,  x e S  (4.1) 

[0, x ~ S - + S  

We will extend the definition of the functions specified on S- to R av by introducing the functions 

~(x,p) = "ff(x,p)Hs(x ), :Z(x,p) = PHs(X ) 

which will be regarded as generalized functions from Dk+l(R/V). Note that 

O).f = H~ (x)Ojf - njJ~S(X ) (4.2) 

where nyfS,(x) - a singular generalized function - is a simple layer on S. Without loss of generality, we 
will assume that the point x = 0 belongs to S-. 

Theorem 4.1. If u(x, p) is the classical solution of the boundary-value problem, we have 

~,(x,p)---- "~i ,(D~ i + Gi )+ o i  * qiS~)s (x) .4- C,~"ui,j *('ffSrll~S(X))+ 

+UmN+I ,(X-Ij~N+I + 6N+I).I_ ~'mN+l ,(~S _I]p~Snj)~)S(X)+UN;I ,('~Snj~s ) 

i , j , k , l = l , 2  ..... N ; m = l , 2  ..... N + I  

Proof. Using the rules for the differentiation of generalized functions and relation (4.2), we obtain 
equations for t~ (x, p)  in D~r(R/v) 

Lq(ax,p)~ j +Wj =0, i,j= 1,2 ..... N+I (4.3) 

Wi = Fii +Gi + nj'OijSs(x)+ C~jt(ukntSs(X)),j, i= 1,2 ..... N (4.4) 

+%+, = + 6,,, , . ,  + - np j),,jas ( x ) +  

Using the property of Green's tensor U{, we consider the generalized solution of Eqs (4.3), which is 
represented in the form of the convolution 

¢vi=ffiJ*~Pj, i , j  = 1,2 ..... N+ i  (4.5) 

Suppose supp q) ¢ S + S-, then 

(U/ *+j,(~i)=(U/ ~Ljk~lk,q)i)---(LjkU/ *~k,(Pi)=(~)ik~(x)*uk,q)i)=(~i,(Pi)'~-O (4.6) 

i.e. ~ = 0 for x ~t S + S-. Consequently, (~ - t~), the solution of the homogeneous boundary-value 
problem (with zero boundary conditions and right-hand side of the equations), is also equal to zero 
for x ¢ S-. Hence, by virtue of the reg~arity of (~ - fi) and the uniqueness of the solution of the 
boundary-value problem, it follows that w = ft. 

Substituting expression (4.4) into (4.6) and using the rules for the differentiation of the convolution, 
taking into account the notation introduced, we obtain the formula indicated in the theorem. All the 
convolutions exist by virtue of the boundedness of S. The theorem is proved. 
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The formula of the theorem expresses the displacements and the temperature within the region in 
terms of their boundary values, and also the values of the load and heat flux on the boundary. It is an 
analogue of Somigliana's formula of the static theory of elasticity, which expresses the displacements 
of the elastic medium in terms of the boundary values of the load and displacements. 

Since only some of the boundary functions are known, the formula does not give solutions of the 
boundary-value problem. One day we shall show that it also holds forx ~ S in the sense of determining 
H i ( x )  and gives boundary integral equations for solving the boundary-value problems in question. 

5. TENSORS WITH COMPONENTS T[ AND G] AND T H E I R  P R O P E R T I E S  

To write formula (4.5) in a convenient integral form, we will introduce a tensor with components 
T / ( x , n , t ) ( i , j , k , l =  l ,  2, . , N , m =  I, 2 , . . . , N  + I)  

Tmk(x,n,p) ,-,ktr-;i = t~ O om,jnt -rlp'G,,N+'nk, Tm n+' = EU+'n (5.1) ra, j j 

In the isotropic case, a tensor with components Tik(x,p) was obtained in the dissertation mentioned 
in the earlier footnote. 

Theorem 5.1. The tensor with components --T~ with fixed k is the fundamental solution of Eqs (3.6) 
and (1.1), corresponding to a concentrated mass force and a heat source of the multipole type 

f f  S - -  t t-,[ k ]l -, - ~ ' s j  nt°j - 'qpnkS~+l)8(x) ,  k = 1,2 ..... N 

-Fs =6fsU+'lnjS.~, k = U + l 

Pro.of. We fix k. We act on Tm k (k, m = 1, 2 . . . . .  N + 1) with the operator Lij(bx, p )  and use the equation 
for Um k . We obtain 

fork  = 1,2 . . . . .  N 

N+I 
L s ~ ( a x , p ) T ~  Y~ u i - . , ~ + j  = LsmC;  Ura,jnl -- L s m l ] p n k u  m 

m=l 

N + I  

m=l  

N + I  
~., kl i I .  / / -  N +  I 

n l C ;  LsmUm,j  - r lpnk -sra--ra = 
ra=l 

f o r k = N +  1 

N + I  
_ ,KN+I n L s m ( a x , P ) T ~  +1= ]E, Lsmnj()jUNm +l - - v s  j .j 

m=l 

s = 1 . 2  ..... N+ 1, j , l =  1,2 ..... N 

The theorem is proved. 
We introduce tensors with components ,~/~ and G m generated by U~ 

- - m  _ i,',kt'iTra --ra . o m  = UN+lra , ~q--". ' i j 'Jk,l-- 'Y 0 ~ i j ,  i , j , k , l = l , 2  .....  N, m = l , 2  ..... N + I  

_ _ G,v+l(x ,n ,p)=(O, j (x ,p)_r lp 'O '7(x ,p) )n  j Gi" (x, n, p) = T..~jn), --m - . I  

Z is the stress tensor generated by pulsed actions; the tensor with components G~' for i = 1, 2 . . . . .  N 
describes the stresses on an area with normal n, and for i = N + 1 it describes the heat flux over this 
area combined with losses on volume expansion. 

We will introduce the notation 

O ~ ( x ) = { y ~ S ; l l x - y l l < e } ,  Sph~(x)={y~ Ru; IIx-Yll<e} 
+ 

S p h ~ = S p h ~ n S - , S ~ = S - O t ,  S ~ = S - - S p h ~ ,  F : = { Y : l l x - y l l = e , y ~ S  ±} 

according to sign; x ~ S. 



Generalized functions in boundary-value problems of coupled thermodynamics 335 

Theorem 5.2 (the dynamic analogue o f  Gauss'formula). If S is a Lyapunov surface, then 

v.p. ~ G i ' ( x -  y,n(y),p)dS(y)+pp 2 J U["(x- y.p)dV(y)=pSmHs(x) 
S S-  

v.p. ~ G'ff+l (x - y, n(y), p)dS(y) + px -I ~ 0"if+ I (x - y, p)dV(y) = 8~+~ Hstx)  
S 5 -  

(5.2) 

Proof. We convolute the equations for Green's tensor 

- , ,  2 -m + 87'8(x) = 0 ~.iLj(x,P)- P PUi 

-m0.~ - px-~ '~ - ~0-j.~ + ~iTv.S(x) = o 

with Hi(x). Talcing into account the rules for the differentiation of a convolution and formulae (4.1), 
we obtain 

- ~ j  (x, p) * n j8 s (x) - p2p ~/m , H~ (x) -I'- p~n Hs (x) = 0, 

- ~  p x - I ~ .  - -O,) *njSs(X)-  * Hs(x)+'qpU 7 *njSs(X)+8~+;Hs(x)=O 

The integral representation of this convolution, taking into account the notation introduced, has the 
form of (5.2), and here all the integrals exist in the usual sense by virtue of the continuity of the integrands 
forx ~ S. 

We will show that formulae (5.2) also hold forx ~ S in the sense of Definition 2.1. 
We transform the contour in the neighbourhood of the point x, circumventing it along the e-circle 

F~ to S- and F + to S + = RN- (S- + S). We put S~ = S- _+ Sph~ and write each of the equalities (5.2) 
for the regions S + and S~. 

A m + B m+ + pp2C/m+ = 8 m, A~ + B m- + pp2C':- = 0 

" "÷+£ "+=S~ +~, " +s~,~.,+£ A/v+I + BN+! C~t+l " A,v+l C~¢+! = 0 
x x 

A7 = 5 G;"(x-y,n(y),p)dS(y), B7 += :± Gf(x-y,n(y) ,p)dS(y)  
St r~ 

C7+-= !~ UT(x-y .p)dV(y) .  j = l . 2  ..... N + I  
St 

m-i- We add the equations in each line pairwise and take the limit as e --+ 0. The volume integrals C} - 
approach the integral over the entire region by virtue of the weak singularity with respect to r of the 

k integrand (see Table 1). We single out the parts of the tensor with components G~ that have strong 
singularity with respect to r: 

Gm=C~t'Uk3nj, G~+,(x,n,p)='Uff+l.jn ), m=l ,2  ..... N + l , i , j , k , l = l , 2  ..... N (5.3) 

Since Gin(x, n, p)  = --Gm(-x, n, p)  and, at opposite points y+ and y- of the sphere 
Sph~ y+- x = - (y-  - x), n(y+) = n(y-), we have 

lim{B..m+ + BT-} = 0, j , m = i , 2  ..... N+I  
E---~0 J 

As a result we obtain the proof. 
If in (5.2) it is assumed that S- = {y : lix -Yll < e} and use is made of the weak asymptotic form 

0 m (x, p)  when [Ix ]l --> 0, we obtain the following corollary. 

Corollary 5.1. For allx 

lim 5 ~"(x-y, y-x 1 , p  dSfy) = 87 
~--*0 r=¢  \ E 
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6. B O U N D A R Y  I N T E G R A L  E Q U A T I O N S  OF B O U N D A R Y - V A L U E  
P R O B L E M S  OF C O U P L E D  T H E R M O E L A S T O D Y N A M I C S  

Theorem 6.1. If  the classical solution u(x, t) of the boundary-value problem exists, ri(x,p) ~ C(S- + S), 
and satisfies the HOlder condition on S for any fixed p(Re p > 0), then 

" f f m n S ( x )  = "U)m * ( F j  + G ) ) + I  (O'km(X-y'P)qS(y'p)+Tm k ( x - y ' p ' n ( y ) ) f f s ( y ' p ) ) d S ( y )  (6.1) 
S 

~+1 = ~(x ,  p),  ~+1 = -O~(x,p). Forx ~ S, the singular integral is taken in the sense of the principal value. 

Proof. We will return to the analogue of Somigliana's formula (2.7), the integral notation of which, 
by virtue of the singularity of the solution, has the form indicated. Since U~m and accordingly T~ (the 
solution of system (1.1)) also have singularities only whenx - y  = 0, i.e. on S, then the integrals on the 
right-hand side of Eq. (6.1) exist for allx ~ S. Consequently, (2.7) is the solution of system (1.1) in S-. 

To prove Eq. (6.1) on the boundary, we consider the asymptotic forms of T k and G~" when r ---> 0. 
By relations (5.1), we have 

~mk(X,n,p) kt--i • • - ~ + l  ;-r, Jv+l ~Ci~Um.)n t , t , J , k , l - l ,2  . . . . .  N; ~Urn. ) nj, r e = l , 2  ..... N + I  

From the properties of symmetry (3.7) it follows that 

G--k m -- ~ i l  ;-7, m ~ i j  7"7, i ~ k l  ;'T i --  k 
I"k)l']i,lRj = {"k/l'Im.jHI -~" {"i) I J m . j , n l  -- Tm 

~ff+t rrN+; = ~ff~l, m= l,2 ... . .  N, i , j , k , l  = l,2 . . . . .  N +1 -- LIN+I , jn j  

Where r --> 0 we have 

U +j = ou,  0":+l = ou,  

p )  - = ON, 

T~'+,(x,n,p)=O N, ~ u + ' = O  N, 

02 = O(lnr), 03 = O0 ~l) 

This results in the equalities 

uk t p'~N+l'x,n,p" ~ rqFi'N+;. :~ "'kl'-' i,j " j ' J N ,  

k = l , 2  ..... N 

lim I Tii m ( x -  y 'n(y) 'p)dS(y)=gm 
E---~0 r=E 

lira ~ TiiN+l(x- y ,n(y) ,p)dS(y)  = $~t+l 
~--+0 r=~ 

(6.2) 

(6.3) 

which hold for N = 2, 3. 
Suppose x ~ S. We consider the region S- -Sph~(x) with the boundary S~ + F~-. Writing the analogue 

of Somigliana's formula for this region, since x ~t S- -Sph~, we obtain 

0 =  ~ ~ i k ( x -  y)fk(y)dS~(Y) + S ~ik(x--  Y)fk (y)dF~ (y)+ 

+ S ~/k (X -- y, n(y), p)u k (y)dS E (y) + ~ Tii k (x - y, n(y), p)u k (y)dF~ (y) (6.4) 
& ri 

Taking the limit as e ---> 0, we have 

- y,n(y),p)Um(Y)+U i ( x -  y)f,n(Y)] dS(y)+ o = v . p . l  (x --m 
S I,m=l 

x - y  
+ lim ~ Ti" (x - y, n'(y), p)Um (Y, p)dS(y), n'(y) = II x - y II 

e--->O r g  
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The integral in the sense of the principal value exists by virtue of the indicated asymptotic form of the 
tensor with components T/~(x,p) and the properties of antisymmetry of the strong singularity. We will 
calculate the average limits using the H61der condition and Eqs (6.2) and (6.3) 

lira J ~m(x-y,n'(y),p)u,,,(y)dS(y)= lira J ~m(x-y,n'(y),p)(um(Y)-U,,,(x))dS(y)+ 
t--,o rt ~--,o rt  

+ lim u m (x)  ~ Tim (x  - y, n ' (y) ,  p)dS(y)  = u m (x)  lira I (~/m (x - y, n ' (y) ,  p)  - 

-G~(x - y,n'(y), p))dS(y) + u~(x) lim ~ G~(x - y,n,(y), p)dS(y) = -~u,.(x) 
~-+0 r ;  z 

Transferring the last term of the equality to the left-hand side of Eq. (6.4), we obtain relation (6.1), 
Tm are singular and taken in the sense of the principal value. The theorem where the integrals containing --k 

is proved. 

7. CONCLUSION 

Formulae (6.3) forx e S are boundary integral equations that enable the four boundary-value problems 
to be solved. All the equations constructed lend themselves to a numerical solution by interpolation 
of the boundary and of the required functions by splines, the order of which is selected depending on 
the required accuracy of the solution of the problem. In the case of the first boundary-value problem, 
the algorithm of the numerical solution of the BIEs is well developed for solving similar kinds of static 
problems of the theory of elasticity. For the remaining boundary-value problems, the solution requires 
the use of different regularization methods. 
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